Evaluation of the Minstrel Rate Adaptation Algorithm in IEEE 802.11g WLANs

Dong Xia,1,2 Jonathan Hart1 Qiang Fu1

1School of Engineering and Computer Science
Victoria University of Wellington, PO Box 600
Wellington 6140, New Zealand

Email: {dong.xia, jonathan.hart, qiang.fu}@ecs.vuw.ac.nz

1School of Engineering and Computer Science
Victoria University of Wellington, PO Box 600
Wellington 6140, New Zealand

Email: {dong.xia, jonathan.hart, qiang.fu}@ecs.vuw.ac.nz

Abstract—Rate adaptation varies the transmission rate of a wireless sender to match the wireless channel conditions, in order to achieve the best possible performance. It is a key component of IEEE 802.11 wireless networks. Minstrel is a popular rate adaptation algorithm due to its efficiency and availability in commonly used wireless drivers. However, despite its popularity, little work has been done on evaluating the performance of Minstrel or comparing it to the performance of fixed rates. In this paper, we conduct an experimental study that compares the performance of Minstrel against fixed rates in an IEEE 802.11g testbed. The experiment results show that whilst Minstrel performs reasonably well in static wireless channel conditions, in some cases the algorithm has difficulty selecting the optimal data rate in the presence of dynamic channel conditions. In addition, Minstrel performs well when the channel condition improves from a poor quality starting point, however it has trouble selecting the optimal rate when the channel condition deteriorates from good quality to bad quality.

I. INTRODUCTION

The IEEE 802.11 standards specify multiple data rates that can be used by a wireless sender, depending on the modulation and coding schemes used at the PHY layer. High data rates transmit data faster than low data rates, however high data rates are more susceptible to bit errors. This means more packets are lost on low quality wireless channels with high bit error rates (BERs). Low data rates take longer to transmit packets over the link, however they are more resistant to bit errors and are more likely to be successfully transmitted over a poor quality wireless link.

Wireless channels are extremely variable and can be affected by a number of different factors, such as interference from other wireless devices, multi-path fading and signal attenuation. As such, one of the key components of an 802.11 system is the rate adaptation mechanism, which adapts the data rate used by a wireless sender to the wireless channel conditions. Rate adaptation is optimization problem: if we use a rate that is too high, many of the packets will be dropped due to bit errors, however if we use a rate that is too low, the wireless channel is not fully utilized.

Rate adaptation is crucial to wireless network performance, and therefore much research has been conducted on how to design effective rate adaptation algorithms. Minstrel [1] is a popular, recently-developed rate adaption algorithm, although there is currently very little literature studying its performance.

Therefore, in this paper we present an experimental study which analyzes the performance of Minstrel by comparing it against fixed rates in a real-world IEEE 802.11g wireless testbed. Fixed rates provide a performance benchmark which a good rate adaptation algorithm should be at least able to meet, if not exceed. We therefore consider an evaluation against fixed rates to be an important tool in the analysis of rate adaptation algorithm behavior.

To fully understand the performance of Minstrel we conducted experiments of three different scenarios: static channel transmission, dynamic channels with fast variation, and dynamic channels with slow variation. This work builds on our previous study which evaluates Minstrel [2]. In this paper we consider different scenarios to provide a more detailed evaluation. We have also further analyzed our results in order to provide deeper insights into Minstrel and rate adaptation algorithm design. Our results show that whilst Minstrel performs well in static wireless channel conditions, the algorithm has difficulty selecting the optimal data rates in more dynamic channel conditions. Furthermore, Minstrel performs well compared to fixed rates when the channel conditions improve from a poor quality starting point, however it has trouble selecting optimal rates when the channel conditions deteriorate from a high quality starting point.

The rest of the paper is organized as follows. We discuss related work in Section II. Section III describes the Minstrel rate adaptation algorithm, and Section IV outlines our experiment methodology. Section V presents and discusses our results, and finally Section VI concludes the paper.

II. RELATED WORK

The topic of rate adaptation has been heavily researched. Previous research generally either targets the design of new rate adaptation algorithms [3]-[10], or compares the performance of different rate adaptation algorithms [11]-[13]. The SampleRate algorithm [14] was previously considered one of the best publicly available algorithms, and is often used for comparison in these studies. Minstrel works similarly to SampleRate, although it differs in the statistic used to measure the success of each rate. SampleRate uses the expected transmission time, whereas Minstrel uses the expected throughput.
Ancillotti et al. evaluated three different rate adaptation algorithms in wireless mesh networks [15]. This evaluation includes SampleRate, and there is some comparison between rate adaptation algorithms and fixed rates. However, the focus of the paper is on the correlation between the number of senders and the rate adaptation algorithms. The evaluation did however show in a particular scenario that the performance of some of the fixed rates was better than the evaluated rate adaptation algorithms.

Wong et al. proposed an algorithm called Robust Rate Adaptation Algorithm (RRAA) [16], which was evaluated against SampleRate and earlier algorithms such as Auto Rate Fallback (ARF) and Adaptive Auto Rate Fallback (AARF). Acharya et al. proposed Wireless cOngestion Optimized Fallback (WOOF) [17], a rate adaptation algorithm that attempts to identify congestion related packet losses. WOOF was evaluated against other solutions including SampleRate. Much of this work was conducted before Minstrel was developed, so the authors were unable to compare with Minstrel. As such, performance evaluations of Minstrel are scarce.

The most closely related works are the evaluations done by Yin et al. [12][13]. These are the only previous evaluations of Minstrel to our knowledge. In one paper the four rate adaptation algorithms found in the MadWiFi driver (namely ONOE, AMRR, SampleRate and Minstrel) were evaluated against one another [12]. The second paper compares the algorithms found in the mac80211 Linux driver framework [13], namely Minstrel and PID. These evaluations use a wired testbed with co-axial cables to emulate wireless channels. This is a clever solution because the algorithms are evaluated in an environment that is free of interference, which means the experiments are able to produce repeatable results. These evaluations show that Minstrel performs far better than the other algorithms. Therefore we chose not to include other schemes such as SampleRate in our evaluation. Moreover, a wired testbed cannot fully reproduce the complex channel environments found in real-world 802.11 deployments, therefore we feel that real-world experimental studies are also important for fully understanding rate adaptation behavior.

Whilst comparisons among different rate adaptation algorithms are certainly very useful, most of these studies do not directly compare against fixed rates. We feel that comparing rate adaptation against fixed data rates is an important step towards the design of effective rate adaptation algorithms.

III. THE MINSTREL ALGORITHM

There are three parts to the Minstrel algorithms: the retry chain mechanism, the rate decision process and the statistic calculations.

A. Retry Chain

The Minstrel rate adaptation algorithm uses a mechanism called a multi-rate retry chain, which enables it to react to short-term variations in channel quality. The retry chain consists of four rate-count pairs, named \(r_0/c_0, r_1/c_1, r_2/c_2, \) and \(r_3/c_3 \). A packet is first transmitted at rate \(r_0 \) for \(c_0 \) attempts. If these attempts are not successful, Minstrel transmits the frame at rate \(r_1 \) for \(c_1 \) attempts. The process continues until either the packet is successfully transmitted or ultimately discarded after \((c_0 + c_1 + c_2 + c_3) \) unsuccessful transmission attempts. The following section discusses how Minstrel chooses the \(r \)-values in the retry chain.

B. Rate Selection

There are two categories of transmission: normal transmission occurs 90% of the time and sampling transmission occurs for the remaining 10% of packets. Table I gives a summary of the rate selection decisions.

1) **Normal Transmission**: During normal transmission the \(r \)-values in the retry chain are chosen as follows: \(r_0 \) is set to the rate that achieves the highest expected throughput, \(r_1 \) is the rate with the second highest expected throughput, \(r_2 \) is the rate with the highest probability of success, and finally \(r_3 \) is set to the lowest available data rate.

2) **Sampling Transmission**: Minstrel relies on having accurate statistics about the success rate of transmissions at each data rate. Of course, it has to attempt to send packets at each data rate in order to have statistics on them. 10% of the data frames are sent as sampling transmissions, where a random rate not currently in the retry chain is chosen to sample. The \(r \)-values are chosen as follows: \(r_0 \) is set to whichever is higher out of the sample rate or the rate with the highest expected throughput, and \(r_1 \) is set to whichever is lower. \(r_2 \) and \(r_3 \) remain the rate with the highest probability of success and the lowest available rate respectively.

C. Statistics Calculation

The final piece of the puzzle is how Minstrel calculates the probability of success and expected throughput for each data rate. Minstrel maintains the probability of successful transmission at each data rate as an Exponentially Weighted Moving Average (EWMA). This probability is based on the historical success rate of packet transmissions at each data rate. This probability is used to estimate the throughput of each rate and the retry chain is re-evaluated based on this estimate every 100ms. In each 100ms sampling window, the success rate, \(R_s \), is calculated for each data rate based on the

TABLE I. MINSTREL RETRY CHAIN [1]	Rate	Random < Best	Random > Best	Normal Transmission
\(r_0 \) | Best rate\(^1\) | Random rate | Best rate
\(r_1 \) | Random rate | Best rate | Second best rate
\(r_2 \) | Best probability\(^2\) | Best probability | Best probability
\(r_3 \) | Base rate\(^3\) | Base rate | Base rate

\(^1\) The data rate that gives the highest throughput
\(^2\) The data rate that has the highest rate of successful transmissions
\(^3\) The lowest available data rate
historical observation of packet successes and failures as in (1), where N_S is the number of packets transmitted successfully at the data rate and N_T is the total number of packets attempted at the data rate.

$$\frac{R_S}{N_T} = P_S$$ \hspace{1cm} (1)

$$P(t+1) = R_S \times (1-\alpha) + P(t) \times \alpha$$ \hspace{1cm} (2)

The R_S value is then used to alter the measured value for the probability of success for each data rate using the EWMA expression (2). The EWMA parameter is used to determine how much weight is given to the R_S value from the new sampling period. The default value of α is 0.25 which means the new probability of success is comprised of 75% of the new sample and 25% of the previous probability of success. Finally Minstrel calculates an expected throughput for each data rate, T, as in (3).

$$T = P_{\text{success}} \times (B / t)$$ \hspace{1cm} (3)

The expected throughput T is the number of bytes B transferred in time t (i.e. the raw throughput of the rate) scaled by the probability of success P_{success} which is maintained by the EWMA expression (2). This results in an expected throughput for each rate which is based on the station’s previous observations of the proportion of packets that have been successfully transmitted at the data rate.

IV. EXPERIMENT METHODOLOGY

A. TESTBED PLATFORM

Figure 1 shows the network topology of the testbed. A wireless Access Point (AP) is connected via Ethernet to a sender PC. We use iperf to send UDP traffic from the sender PC to a laptop receiver, which is wirelessly associated with the AP. The AP and laptop use wireless cards containing the Atheros AR5414 chipset. The AP is based on the MikroTik Routerboard R52 platform and runs the Linux-based OpenWrt firmware. The server PC and client laptop run Ubuntu 10.04 with a 2.6.23 kernel. The AP used for the experiment was either set to 17 dBm or 1 dBm, then during the experiment the transmission power is increased or decreased by 2 dBm increments at each update period until it reaches 1 dBm or 17 dBm.

We consider both low to high and high to low changes. We vary this period from 2 to 5 seconds. At the beginning of the experiment the transmission power is either set to 17 dBm or 1 dBm, then during the experiment the transmission power is increased or decreased by 2 dBm increments at each update period until it reaches 1 dBm or 17 dBm.

The experiments focus on three different scenarios: static channel transmission, fast variations in channel quality and gradual changes in channel quality. We use the transmission power of the AP to control the wireless channel conditions. When the transmission power is high, the wireless channel conditions are good. Then as we decrease the transmission power of the AP, the wireless channel conditions deteriorate, the channel becomes more susceptible to interference, and this emulates a lossy or poor quality wireless channel.

The goal of our evaluation is to compare Minstrel to fixed rates to analyze the performance of the algorithm. By fixed rates, we mean that we disable rate adaptation and manually set the wireless cards to use a specific rate. This gives us a baseline indication of the performance capabilities of the wireless channel in each situation. We conduct each experiment with each of the 802.11g fixed rates, and also with Minstrel.

1) Static Channel: In this scenario, the transmission power is fixed for the duration of experiments. This means the quality of the wireless channel is relatively stable during each experiment. We perform different experiments with different transmission powers ranging from 17 to 1 dBm. This experiment provides basic performance comparison between Minstrel and fixed rates.

2) Rapid Channel Variation: In this scenario we create large variations in the wireless channel quality, i.e. the channel will jump from good quality to poor quality quickly, and vice versa. This could happen, for example, in a situation when some external interference briefly causes a drop in channel quality. This is implemented by changing the AP’s transmission power from 17 dBm to 1 dBm and back in a periodic fashion. The transmission power is held at 17 dBm for 2s before jumping to 1 dBm. We run different experiments in which the duration that the transmission power stays at 1 dBm before jumping back up is varied from 2s to 10s.

3) Gradual Channel Variation: Sometimes the channel quality will change gradually, for example, if a wireless client moves spatially with respect to the AP. In this scenario, we gradually change the wireless channel condition by increasing or decreasing the transmission power during the experiment. We consider both high to low and low to high changes. We run experiments with different update periods, i.e. the time value inbetween consecutive power level updates. We vary this period from 2 to 5 seconds. At the beginning of the experiment the transmission power is either set to 17 dBm or 1 dBm, then during the experiment the transmission power is increased or decreased by 2 dBm increments at each update period until it reaches 1 dBm or 17 dBm.
V. RESULTS

A. Static Channel

Figure 2 shows the throughput of Minstrel and each of the fixed rates. The transmission power is static during each experiment, and we conduct experiments at a number of different power levels. The throughput of Minstrel decreases as the transmission power decreases. In addition, Minstrel achieves comparable performance to the best-performing fixed rate at all power levels. This experiment also shows that lower data rates are lost due to the lower quality wireless channel. Figure 3 shows a percentage breakdown of the data rates attempted by Minstrel in the static channel experiment at each different power level. When the transmission power is set to 17 dBm (the highest quality channel), Minstrel mostly attempts to use 54 Mbps and 48 Mbps. However, at the lower transmission power levels the channel drops more packets, and Minstrel attempts the lower data rates more often. When the transmission power is set to 1 dBm, more than 70% of attempts are made at the 12 Mbps and 18 Mbps rates. By the nature of Minstrel sampling algorithm, if the randomly selected rate is higher than the current best rate, the random rate is used first, otherwise the random rate is used second.

Higher data rates always have a higher chance of being sampled. As Figure 3 shows, even when the transmission power is low, a significant proportion of packets that are still attempted at high data rates. This means that Minstrel has better statistics on the high data rates because it uses them more often than the low data rates. However, Minstrel’s tendency to sample and select higher data rates doesn’t incur a significant performance cost in stable channel conditions.

B. Rapid Channel Variation

In this section, we study the performance of Minstrel in dynamic channel conditions by periodically switching between high and low transmission power levels. Figure 4 shows the performance of fixed rates and Minstrel in relation to the duration of the low transmission power. As the duration of the low quality channel increases, the performance of Minstrel and the high fixed rates (54, 48, and 36 Mbps) suffers significantly. This poor performance is expected for the high rates, as they drop more packets due to bit errors in a low quality wireless channel. The performance of Minstrel and high rates stabilizes after the low power duration increases past 5 seconds. In contrast, the performance of the low rates is relatively consistent even as the low power duration increases. We expect that sudden changes would reduce Minstrel’s performance suffer, however it is surprising to see that Minstrel is outperformed in most cases by the 12 Mbps and 18 Mbps fixed rates, which unable to adapt at all.
use the optimal rate a greater proportion of the time when the update period is longer.

From looking at the rate distribution (not shown), we can see that Minstrel attempts to use low data rates more often as the transmission power decreases. However, fixed rates still outperform Minstrel, suggesting that Minstrel makes incorrect rate selection as the channel quality deteriorates.

Table II shows the rate most frequently used by Minstrel (outside the brackets), and the fixed rate that achieves the highest ideal throughput (inside the brackets) for each transmission power update period at different power levels. The ideal throughput, T_I, is calculated as in (4) as the data rate multiplied by the ratio of successful attempts (N_s) to total attempts (N_T).

$$T_I = \text{Rate} \times \frac{N_s}{N_T} \quad (4)$$

Minstrel should strive to use the rate with the highest throughput most often, however during these experiments it often fails to do so, as indicated by the bold entries in Table II(a). Minstrel often makes incorrect rate choices when the power level is low and when the transmission power update period is short. Again, Minstrel tends to select a rate higher

Table II. Rate most frequently attempted by Minstrel (outside brackets) vs. rate with highest ideal throughput (inside brackets)

<table>
<thead>
<tr>
<th>TX Power (dBm)</th>
<th>2s update period</th>
<th>3s update period</th>
<th>4s update period</th>
<th>5s update period</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>24(36)</td>
<td>24(36)</td>
<td>24(36)</td>
<td>24(36)</td>
</tr>
<tr>
<td>15</td>
<td>24(36)</td>
<td>24(24)</td>
<td>24(36)</td>
<td>24(36)</td>
</tr>
<tr>
<td>13</td>
<td>24(24)</td>
<td>24(24)</td>
<td>24(36)</td>
<td>24(36)</td>
</tr>
<tr>
<td>11</td>
<td>24(24)</td>
<td>24(24)</td>
<td>24(36)</td>
<td>24(36)</td>
</tr>
<tr>
<td>9</td>
<td>24(12)</td>
<td>24(12)</td>
<td>24(24)</td>
<td>24(24)</td>
</tr>
<tr>
<td>7</td>
<td>24(12)</td>
<td>24(12)</td>
<td>24(12)</td>
<td>24(12)</td>
</tr>
<tr>
<td>5</td>
<td>24(12)</td>
<td>24(12)</td>
<td>24(12)</td>
<td>24(12)</td>
</tr>
<tr>
<td>3</td>
<td>24(12)</td>
<td>24(12)</td>
<td>24(12)</td>
<td>24(12)</td>
</tr>
<tr>
<td>1</td>
<td>24(12)</td>
<td>24(12)</td>
<td>18(12)</td>
<td>12(12)</td>
</tr>
</tbody>
</table>

(a) Deteriorating channel conditions

<table>
<thead>
<tr>
<th>TX Power (dBm)</th>
<th>2s update period</th>
<th>3s update period</th>
<th>4s update period</th>
<th>5s update period</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>24(18)</td>
<td>24(18)</td>
<td>24(18)</td>
<td>12(12)</td>
</tr>
<tr>
<td>15</td>
<td>24(18)</td>
<td>18(18)</td>
<td>18(18)</td>
<td>18(18)</td>
</tr>
<tr>
<td>13</td>
<td>24(24)</td>
<td>18(18)</td>
<td>18(18)</td>
<td>24(24)</td>
</tr>
<tr>
<td>11</td>
<td>24(24)</td>
<td>18(24)</td>
<td>24(24)</td>
<td>24(24)</td>
</tr>
<tr>
<td>9</td>
<td>24(24)</td>
<td>24(24)</td>
<td>36(36)</td>
<td>36(36)</td>
</tr>
<tr>
<td>7</td>
<td>36(36)</td>
<td>36(36)</td>
<td>36(36)</td>
<td>36(36)</td>
</tr>
<tr>
<td>5</td>
<td>36(36)</td>
<td>36(36)</td>
<td>36(36)</td>
<td>36(36)</td>
</tr>
<tr>
<td>3</td>
<td>36(36)</td>
<td>36(36)</td>
<td>48(48)</td>
<td>48(48)</td>
</tr>
<tr>
<td>1</td>
<td>48(48)</td>
<td>48(48)</td>
<td>48(48)</td>
<td>48(48)</td>
</tr>
</tbody>
</table>

(b) Improving channel conditions
than the optimal rate. However, as the update period increases, Minstrel’s selection of rates becomes more accurate. This explains why Minstrel’s performance improves with the longer update period.

Figure 7 shows the throughput of fixed rates and Minstrel when the transmission power increases from 1 dBm to 17 dBm. Minstrel has superior performance over the fixed rates in all cases. This is the positive outcome of the algorithm which aggressively samples higher rates over lower rates. This means that as soon as the channel conditions improve, Minstrel is quickly able to take advantage and use higher rates. Table II(b) again shows the rate most often used by Minstrel and the rate with the highest ideal throughput in each situation. We can see that in this scenario when the channel conditions are improving, Minstrel becomes more accurate in choosing the rate with the highest ideal throughput. Moreover, as the update period increases, Minstrel has more time to adapt and is able to choose the correct rate more accurately.

VI. CONCLUSION

In this paper, we evaluate the performance of Minstrel against fixed rates in a real-world IEEE 802.11g wireless testbed. Our results show that Minstrel can achieve a performance comparable to the best performing fixed rates when the wireless channel conditions are relatively static. With static channels, Minstrel can usually accurately identify the best rates to use. However, in the presence of dynamic channel conditions, Minstrel is significantly outperformed by certain fixed rates. This is due to Minstrel’s tendency to select rates that are too high for the current channel conditions. By analyzing Minstrel’s rate choices we can see that Minstrel attempts to use high rates too often in a rapidly changing wireless channel. We also looked at gradual changes in channel quality, and discovered that Minstrel has poor performance when the wireless signal strength deteriorates from high to low. Conversely, Minstrel outperforms fixed rate when the signal strength increases from low to high. Again, this is due to Minstrel’s tendency to select high rates. This behavior is undesirable when the channel conditions are deteriorating, and Minstrel pays a performance penalty. However it does give Minstrel the ability to quickly make use of higher rates when the channel conditions improve.

VII. ACKNOWLEDGEMENT

We are grateful to InternetNZ for its support in this project.

REFERENCES